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1. Introduction

Black holes are testing grounds for string theory as a theory of quantum gravity. The

Bekenstein-Hawking entropy is inherently quantum gravitational, involving both the New-

ton’s constant GN and Planck’s constant ~. Therefore, any consistent theory of quantum

gravity should address the origin of black hole entropy.

The ‘holographic’ principle, [1, 2], was formulated as an attempt at understanding

the physics of quantum black holes and at reconciling gravitational collapse and unitarity
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of quantum mechanics at the Planck scale. Thus, it is very tempting to consider the

holographic principle as a simple organizing principle for quantum gravity. String theory

provides a concrete realization of the holographic principle for spacetimes with negative

cosmological constant, namely the anti-de Sitter (AdS)/CFT correspondence [3]. That is a

non-perturbative background independent definition of quantum gravity in asymptotically

AdS spaces. On the other hand, string theory provides a microscopic description for the

entropy of certain types of black holes through the counting of D-branes bound states [4]

including subleading corrections [5].

AdS black holes in gauged supergravity theories have found widespread application

in the study of the AdS/CFT correspondence (see, e.g., [6] and references therein). BPS

objects are important within AdS/CFT duality, regardless of their precise nature, since

their properties remain the same in both the strong and weak coupling regimes of the

duality. However, it is also useful to investigate properties of non-BPS objects in this

context — this is the topic of the present investigation.

The attractor mechanism plays a key role in understanding the entropy of asymptot-

ically flat non-supersymmetric extremal black holes in string theory [7 – 9] and so it is of

great interest to study the attractor behavior of extremal black hole horizons in AdS.

The attractor mechanism was discovered in the context of N = 2 supergravity [10],

then extended to other supergravity theories [11, 12]. It is now well understood that

supersymmetry does not really play a fundamental role in the attractor phenomenon. The

attractor mechanism works as a consequence of the symmetry of the near horizon extremal

geometry that is given by AdS2 ×Sp [13] for static spherically symmetric black holes — in

fact, the ‘long throat’ of AdS2 (see [14]) is at the basis of the attractor mechanism [13, 15,

16].1 Based on earlier results of Wald [18], Sen proposed a new method [13] (a variational

principle in the BPS context was given in [19]) to compute the entropy of extremal black

holes in higher derivative theories referred to as the ‘entropy function formalism’.

One can understand why the near horizon geometry is more important than supersym-

metry by analogy with the flux compactifications: AdS2 × S2 can be interpreted as a flux

compactification on S2. This way, the flux generates an effective potential for the moduli

such that, at the horizon, the potential has a stable minimum and the moduli are stabilized.

Unlike the non-extremal case where the near horizon geometry (and the entropy) depends

on the values of the moduli at infinity, in the extremal case the near horizon geometry is

universal and is determined by only the charge parameters. Consequently, the entropy is

also independent of the asymptotic values of the moduli.

In this paper we study the attractor mechanism in AdS spacetime in the presence of

higher derivatives terms. We focus on static 5-dimensional charged black hole solutions in

gravity theories with U(1) gauge fields and neutral massless scalars. The extremal black

holes in AdS have also an AdS2×S3 geometry in the near horizon limit, hence the analogy

would indicate that the attractor mechanism should also work for this kind of black holes.

Following [20], we use perturbative methods and numerical analysis to show that the

1A relation between the entanglement entropy of dual conformal quantum mechanics in AdS2/CFT1

and the entropy of an extremal black hole was provided in [17].
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horizons of extremal black holes in AdS (with Gauss-Bonnet term) are attractors — this

analysis supports the existence of the attractor mechanism for black holes in AdS space

with higher derivatives.

We will provide a physical interpretation for the attractor mechanism within the

AdS/CFT duality. This requires the embedding in string theory that is explicitly con-

structed. Once we embed the solutions in 10 dimensional IIB supergravity (and so in

string theory), we can use the AdS/CFT correspondence to interpret the moduli flow as a

holographic renormalization group (RG) flow.

To complete our analysis of the attractor mechanism within AdS/CFT duality, we will

construct a c-function that obeys the expected results, namely it decreases monotonically

as the radial coordinate is decreasing. Therefore, within the AdS/CFT correspondence,

there is a concrete connection between the attractor mechanism (gravity side) and the

‘dual’ universality property of the QFT. The idea (referred to as ‘universality’ of QFT)

that the IR end-point of a QFT RG flow does not depend upon UV details becomes in

the holography context the statement that the bulk solution for small values of r does not

depend upon the details of the matter at large values of r. Indeed, within the attractor

mechanism, the black hole horizon (IR region) does not have any memory of the initial

conditions (the UV values of the moduli) at the boundary. The black hole entropy depends

just on the charges and not on the asymptotic values of the moduli. However, we can

interpret it as a ‘no-hair’ theorem for the extremal black holes in AdS that is equivalent

with the ‘universality’ of the field theory on the brane [21].

The paper is organized as follows: In section 2 we discuss the attractor mechanism in

two derivative gauged supergravity. Our discussion is general in that it is based on analysis

of the equations of motion, not just the near horizon geometry and its symmetries. We

show the equivalence of the effective potential approach [20] and the entropy function

formalism [13] in the near horizon limit of the extremal black holes in AdS. In section 3 we

examine the attractor mechanism in AdS gravity with higher derivatives. We generalize

the effective potential in the Gauss-Bonnet gravity and find that even in this case the

extremal black hole horizon is a stable minimum of the effective potential. Consequently,

the moduli are stabilized and the entropy does not depend on couplings. In section 4 we

present a holographic interpretation for the attractor mechanism by identifying the moduli

flow with the RG flow and also find the c-function. Finally, we end with a discussion of

our results in section 5.

2. Attractors in two derivative gauged supergravity

In this section we generalize the results of [20] by including a potential for the scalar

fields in the action. We discuss the attractor mechanism using both the effective poten-

tial method [20] and the entropy function framework [13]. The first method is based on

investigating the equations of motion of the moduli and finding the conditions satisfied by

the effective potential such that the attractor phenomenon occurs. The entropy function

approach is based on the near horizon geometry and its enhanced symmetries.
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2.1 Generalities

While details of the various supergravity theories depend crucially on the dimension, gen-

eral features of the bosonic sector can be treated in a dimension independent manner.

However, from now on, we will focus on a 5-dimensional theory of gravity coupled to a set

of massless scalars and vector fields, whose general bosonic action has the form

I[Gµν , φ
i, AIµ] =

1

κ2

∫

M
d5x

√
−G[R− gij(φ)∂µφ

i∂µφj

−fAB(φ)FAµνF
B µν + V (φ)] (2.1)

where FAµν with A = (0, · · ·N) are the gauge fields, φ ≡ (φi) with i = (1, · · · , n) are the

scalar fields, V (φi) is the scalar fields potential, and κ2 = 16πGN . The moduli determine

the gauge coupling constants and gij(φ) is the metric in the moduli space. We use Gaussian

units so that factors of 4π in the gauge fields can be avoided and the Newton’s constant

GN is set to 1/16π. The above action is of the type of the gauged supergravity theories.2

The equations of motion for the metric, moduli, and the gauge fields are given by

Rµν − gij∂µφ
i∂νφ

j = fAB

(

2FAµλF
B λ
ν − 1

3GµνF
A
αλF

Bαλ
)

− 1

3
GµνV (φ) (2.2)

1√
−G∂µ(

√
−Ggij∂µφj) =

1

2

(

∂fAB
∂φi

FAµνF
B µν +

∂gmn
∂φi

∂µφ
m∂µφn − ∂V (φ)

∂φi

)

(2.3)

∂µ

[√
−G

(

fABF
B µν

)

]

= 0 (2.4)

where we have varied the moduli and the gauge fields independently. The Bianchi identities

for the gauge fields are FA[µν;λ] = 0.3

We focus on 5-dimensional spherically symmetric spacetime metrics and we consider

the following ansatz:

ds2 = −a(r)2dt2 + a(r)−2dr2 + b(r)2dΩ2
3 (2.5)

We consider a definite form of the 3-sphere

dΩ2
3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2 (2.6)

with coordinate ranges θ ∈ [0, π2 ] and φ,ψ ∈ [0, 2π].

The Bianchi identity and equation of motion for the gauge fields can be solved by a

field strength of the form [20]

FA =
1

b3
fABQB dt ∧ dr (2.7)

where QA are constants which determine electric charges carried by the gauge field FA and

fAB is the inverse of fAB.

2In 5-dimensional supergravity theories, one should also consider a gauge Chern-Simons term. However,

since we are considering only static electrically charged black hole solutions, the Chern-Simons term does

not play any role.
3For simplicity, we keep the metric on the moduli manifold constant. However, the two conditions for the

existence of an attractor (2.31), (2.33) are unchanged in the more general case with a non-trivial metric [20].
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With this ansatz, the gravitational equations of motion become

Rrr = − 1

a2b

(

b(a′2 + aa′′) + 3a(a′b′ + ab′′)
)

(2.8)

= φ′2 − 4

3a2b6
fABQAQB − 1

3a2
V (φ)

Rtt = a2

(

a′2 +
3aa′b′

b
+ aa′′

)

(2.9)

=
4a2

3b6
fABQAQB +

1

3
a2V (φ)

Rθθ = 2 − 2aba′b′ − a2(2b′2 + bb′′) (2.10)

=
2

3b4
fABQAQB − 1

3
b2V (φ)

Here we use the notation φ′2 = gij∂rφ
i∂rφj . Note that Rφφ = sin2 θRθθ, Rψψ = cos2 θRθθ,

and that off-diagonal components of the Ricci and stress tensors vanish. It is also important

to notice that the field equations are not all independent.

It is easier to use combinations of the equations above

Rtt + 2
Gtt
Gθθ

Rθθ , Rrr −
Grr
Gtt

Rtt , −Gθθ
Gtt

Rtt +
Gθθ
Grr

Rrr − 3Rθθ (2.11)

and from now on we will work with the following equivalent system of differential equations:

0 = 4(−1 + a2b′2) + (a′2 + aa′′)b2 + ab(7a′b′ + 2ab′′) − b2V (φi) (2.12)

0 = φ′2 + 3
b′′

b
(2.13)

0 = −1 + aba′b′ + a2b′2 − 1

6
a2b2φ′2 − 1

6
b2V (φi) +

Veff

3b4
(2.14)

We should also consider the equations of motion for the scalars which can be written as

∂r(a
2b3∂rφi) =

1

b3

(

∂iVeff − 1

2
b6∂iV

)

(2.15)

where Veff = fABQAQB and fAB is the inverse of fAB. When the scalar potential V (φ) is

constant, Veff(φi) plays the role of an ‘effective potential’ that is generated by non-trivial

form fields. The effective potential, first discussed in [22], plays an important role in

describing the attractor mechanism [20].

A vanishing Hamiltonian is a characteristic feature of any theory which is invariant

under arbitrary coordinate transformations — for our system, the equation (2.14) does not

contain any second derivative and is the Hamiltonian constraint.

As a final comment, we observe that the equations of motion can also be obtained from

the following one-dimensional action

S =
1

κ2

∫

dr

(

6b+ 6ab2a′b′ + 6a2bb′2 + b3V (φ) − a2b3(φ′i)
2 − 2

b3
Veff(φi)

)

(2.16)
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2.2 Entropy function

We apply the entropy function formalism to static black holes in AdS space.4 It was shown

by Sen that the attractor mechanism is related to the extremality (attempts to apply the

entropy function to non-extremal black holes can be found in [24]) rather than to the

supersymmetry property of a given solution. Indeed, the AdS2 factor of the near-horizon

geometry is at the basis of the attractor mechanism. As has been discussed in [16, 25], the

moduli do not preserve any memory of the initial conditions at infinity due to the presence

of the infinite throat of AdS2. This is in analogy with the properties of the behavior of

dynamical flows of dynamical systems, where, on approaching the attractors, the orbits

practically lose all the memory of their initial conditions.5

Therefore, an important hint for the existence of the attractor mechanism is the ex-

istence of an AdS2 as part of the near horizon geometry of an extremal black hole. The

extremal charged black hole solution of the equations of motion with constant scalar fields

is the extremal Reissner-Nordstrom-anti-de Sitter (RNAdS) black hole given by [26]

a2(r) = 1 +
r2

l2
− m

r2
+
q2

r4
=

1

l2r4
(r − rH)2(r + rH)2(r2 + 2r2H + l2) (2.17)

Here r = rH is the degenerate horizon and can be calculated using the following expressions

of mass and charge parameter:

m = 2r2H

(

1 +
3r2H
2l2

)

, q2 = r4H

(

1 + 2
r2H
l2

)

(2.18)

The mass parameter m and the charge parameter q are related to the asymptotic ADM

charges M and Q by:

M =
3π

8GN
m, Q =

√
3q (2.19)

and the electric field is given by

F =
1

2
Fµνdx

µ ∧ dxν =
Q

r3
dr ∧ dt (2.20)

In the near horizon limit, ρ = r − rH → 0, we obtain

a(ρ) =
4

l2r2H
(3r2H + l2) ρ2 =

1

v1
ρ2 (2.21)

where v1 is a constant that can be interpreted as the radius of AdS2 — the AdS2 × S3

geometry appears explicitly by making the change of coordinates t = v1τ .

It is important to notice that the extremal solution is non-supersymmetric. The su-

persymmetric bound is M = 2Q and in this limit one finds a naked curvature singularity

at r = 0. However, by adding α′-corrections this singularity may be dressed by a horizon

with finite area.

4The entropy function for AdS black holes was considered by Morales and Samtleben in [23]. However,

our discussion is more general and the interpretation of some results in this section are substantially new.
5This analogy should be taken with caution — a detailed discussion on this subject can be found in [8].
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Let us now briefly review the entropy function formalism. In [13] (see also [27]), it was

observed that the entropy of a spherically symmetric extremal black hole is the Legendre

transform of the Lagrangian density. The derivation of this result does not require the

theory and/or the solution to be supersymmetric. The only requirements are gauge and

general coordinate invariance of the action.

The entropy function is defined as

F (−→u ,−→v ,−→e ,−→p ) = 2π(eiqi − f(−→u ,−→v ,−→e ,−→p ) = 2π

(

eiqi −
∫

dθdφdψ
√
−GL

)

(2.22)

where qi = ∂f/∂ei are the electric charges, us are the values of the moduli at the horizon,

pi and ei are the near horizon radial magnetic and electric fields and v1, v2 are the sizes of

AdS2 and S2 respectively. Thus, F/2π is the Legendre transform of the function f with

respect to the variables ei.

For an extremal black hole of electric charge
−→
Q and magnetic charge

−→
P , Sen has shown

that the equations determining −→u ,−→v , and −→e are given by:

∂F

∂us
= 0 ,

∂F

∂vi
= 0 ,

∂F

∂ei
= 0 (2.23)

Then, the black hole entropy is given by S = F (−→u ,−→v ,−→e ,−→p ) at the extremum (2.23). The

entropy function, F (−→u ,−→v ,−→e ,−→p ), determines the sizes v1, v2 of AdS2 and S3 and also the

near horizon values of moduli us and gauge field strengths ei. If F has no flat directions,

then the extremization of F determines −→u , −→v , −→e in terms of
−→
Q and

−→
P . Therefore,

S = F is independent of the asymptotic values of the scalar fields. These results lead

to a generalized attractor phenomenon for both supersymmetric and non-supersymmetic

extremal black hole solutions.

Now we are ready to apply this method to our action (2.1). The general metric of

AdS2 × S3 can be written as

ds2 = v1

(

− ρ2dτ2 +
1

ρ2
dρ2

)

+ v2dΩ
2
3 (2.24)

The field strength ansatz (2.7) in our case is given by

FA = eAdτ ∧ dρ. (2.25)

The entropy function F (ui, v1, v2, e
A, QA) and f(ui, v1, v2, e

A) are given by

F (ui, v1, v2, e
A, QA) = 2π[QAe

A − f(ui, v1, v2, e
A)] , (2.26)

f(ui, v1, v2, e
A) = 2π2

[

−2v
3/2
2 + 6v1

√
v2 + 2

v
3/2
2

v1
fABe

AeB + v1v
3/2
2 V (φ)

]

– 7 –
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Then the attractor equations are obtained as:

∂F

∂v1
= 0 ⇒ 6v2

1 − 2v2fABe
AeB + v2

1v2V (φ) = 0 (2.27)

∂F

∂v2
= 0 ⇒ −v1v2 + v2

1 + v2fABe
AeB +

v2
1v2
2
V (φ) = 0 (2.28)

∂F

∂ui
= 0 ⇒ 2

∂fAB
∂ui

eAeB = −v2
1

∂V

∂ui
(2.29)

∂F

∂eA
= 0 ⇒ QA = 8π2 v

3/2
2

v1
fABe

B (2.30)

By combining the first two equations we obtain 4/v2 − 1/v1 + V (φ) = 0 and so the radii

of AdS2 and S3 are related by the potential of the scalars.6 By replacing (2.27) and (2.30)

in (2.26) we obtain the value of the entropy function at the extremum, F = 8π3v
3/2
2 , that

is the entropy of the black hole (our convention was GN = 1/16π).

The third equation is very important: in AdS spacetime, V (φ) = constant, this equa-

tion is equivalent with finding the critical points of the effective potential at horizon. One

can easily eliminate the field strengths in the favor of charges by using the last equation

to obtain (∂fAB/∂ui)QAQB = 0 — we will show in the next subsection that this is one

of the conditions for the existence of attractor mechanism. If this equations has solutions,

then the moduli values at the horizon are fixed in term of the charges. It is also important

to notice that the existence of a near-horizon geometry when the moduli are not constants

does not imply the existence of the whole solution in the bulk (from the horizon to the

boundary) — this is the disadvantage of the entropy function formalism. However, in the

next subsection we will investigate the equations of motion in the bulk and describe the

horizon as an IR critical point of the effective potential.

2.3 Effective potential and non-supersymmetric attractor

In this section we consider a constant potential for scalars, V (φ) = 12/l2. For the attractor

phenomenon to occur, it is sufficient if the following two conditions are satisfied [20]. First,

for fixed charges, as a function of the moduli, Veff must have a critical point. Denoting the

critical values for the scalars as φi = φi0 we have,

∂iVeff(φi0) = 0 (2.31)

Second, there should be no unstable directions about this minimum, so the matrix of second

derivatives of the potential at the critical point,

Mij =
1

2
∂i∂jVeff(φk0) (2.32)

should have no negative eigenvalues. Schematically we can write,

Mij > 0 (2.33)

6We can check this relation for the extremal RNAdS black hole [26] by using the following relations:

V (φ) = −4Λ, Λ = −3/l2, v2 = r2

H , and v1 is given in (2.17).

– 8 –
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We will refer to Mij as the mass matrix and its eigenvalues as masses (more correctly

mass2 terms) for the fields, φi.

It is important to note that in deriving the conditions for the attractor phenomenon,

one does not have to use supersymmetry at all. The extremality condition puts a strong

constraint on the charges so that the asymptotic values of the moduli do not appear in the

entropy formula.

2.3.1 Zeroth order analysis

Let us start by setting the asymptotic values of the scalars equal to their critical values

(independent of r), φi = φi0. The equations of motion (2.13), (2.12) can be easily solved.

First we solve (2.13) and get b(r) = r, and then replace this expression in (2.12) — we

obtain:

1

2
r2(a2)′′ +

7

2
r(a2)′ + 4a2 = 4 +

12

l2
r2. (2.34)

The most general solution of this equation is given by a2(r) = 1 + C1/r
2 + C2/r

4 + r2/l2,

where C1 and C2 are integration constants. We are interested in the extremal solutions

and so the integration constants can be calculated from the ‘double horizon’ 7 condition:

C2 = −
(

3r4H
l2

+ 2r6H

)

, C1 = r4H +
2r6H
l2

, (2.35)

where rH is the horizon radius. Therefore, we can write the solution as

a0(r) =

(

1 − r2H
r2

)

√

1 +
r2 + 2r2H

l2
, b0(r) = r, (2.36)

that describes the extremal RNAdS found in the previous subsection.

The Hamiltonian constraint evaluated at the boundary provides a constraint on

charges. However, we are interested in solving the Hamiltonian constraint at the horizon

and to obtain a relation between the entropy and the effective potential. It is important

to notice that the temperature is proportional to aa′ and so just in the extremal limit this

product is vanishing. With this observation the Hamiltonian constraint simplifies drasti-

cally at the horizon. Thus, the horizon radius, rH , can be computed from the following

equation:

−3r4H − 6

l2
r6H + Veff(φi0) = 0. (2.37)

We obtain (fAB = 1)

Q2 = 3r4H

(

1 + 2
r2H
l2

)

, (2.38)

that is the electric charge (2.19) of the extremal RNAdS black hole.

7The inner and outer horizons coincide and the equation has a double root.
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2.3.2 First order analysis

For the extremal RNAdS black hole solution carrying the charges specified by the parameter

QA and the moduli taking the critical values φi0 at infinity, a double zero horizon continues

to exist for small deviations from these attractor values for the moduli at infinity. The

moduli take the critical values at the horizon and entropy remains independent of the

values of the moduli at infinity [20]. The horizon radius is given by the eq. (2.37) and the

entropy is

SBH =
A

4GN
=

π2

2GN
r3H = 8π3r3H (2.39)

We start with first order perturbation theory

δφi = φi − φi0 = ǫφi1 (2.40)

where ǫ is a small parameter we use to organize the perturbation theory. The first correction

to the scalars φi satisfies the equation

∂r(a
2
0b

3
0∂rφi1) =

β2
i

b30
φi1 (2.41)

where β2
i is the eigenvalue for the matrix 2Mij . We are interested in a ‘smooth’ solution

that does not blow up at horizon r = rH . It is difficult to find a general solution — however

we will study our equations in the near horizon limit (the solution in the asymptotic region

is presented in section 4) and keep in mind that there is a smooth interpolation between

the horizon and the boundary. In the near horizon limit, we obtain

φi1 = c1i

(

1 − rH
r

)γi

(2.42)

where γi are positive roots of following equations

γi(γi + 1) =
β2
i

4r4H

(

1 +
3r2H
l2

)

−1

(2.43)

Asymptotically (as r → ∞) φi1 takes a constant value, c1i — however φi1 is vanishing at

the horizon and the value of the scalar is fixed at φi0 regardless of its value at infinity. We

observe from the equation (2.43) that if the eigenvalues of the mass matrix are positive,

then the solution is regular at the horizon and so the existence of a regular horizon is

related to the existence of the attractor mechanism. In the light of previous discussions,

this is easy to understand if we recall that the near horizon geometry of an extremal black

hole is AdS2 × S3.

2.3.3 Second order analysis and back reaction

The first perturbation in scalars sources a second order correction in the metric. We write

a = a0 + a2ǫ
2 (2.44)

b = b0 + b2ǫ
2 (2.45)
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and by solving the equations (2.12) and (2.13) we obtain

a(r) = (1 − r2H
r2

)

√

1 +
r2 + 2r2H

l2

(

1 + ai2

(

1 − rH
r

)2γi

)

(2.46)

b(r) = r

(

1 + bi2

(

1 − rH
r

)2γi

)

(2.47)

where

ai2 = −bi2





1

(γi + 1)(2γi + 1)(1 +
3r2

H

l2
)

+
γi(4γi + 5)

(γi + 1)(2γi + 1)



 (2.48)

bi2 = − γic
2
1i

6(2γi − 1)
(2.49)

We see that in second order we need to choose again positive γi in order to get a regular

horizon. That means the small fluctuations about the extremal point must all be positive

and so the horizon is an attractor. Thus, in the near horizon limit we obtain again the

near horizon geometry of the extremal RNAdS black hole that is fixed only by the charges.

2.4 Higher order result

Going to higher orders in perturbation theory is in principle straightforward. We solve the

system of equations (2.12)–(2.14) order by order in the ǫ-expansion. To first order, we find

that one variable, say c1i , can not be fixed by the equations. Thus we find ai2 and bi2 as

functions of c1i. One can check that at any order n > 2, one can substitute the resulting

values of (ami, bmi, φmi ), for all m ≤ n from the previous orders. Then (2.12)–(2.14) of

the order m, consistently give,

ami = ami(c1i), bmi = bmi(c1i), φmi = φmi(c1i), (2.50)

as polynomials of order n in terms of c1i. It is worth noting that c1i remains a free parameter

to all orders in the ǫ- expansion. Owing to the result above, we observe that (a∞i, b∞i, φ∞i)

are varying and will take different values, given different choices for c1i. The arbitrary value

of φi at infinity is φi = φ∞i , while its value at the horizon is fixed to be φ0i. Figure 1

shows the result of numerical simulations for φ vs. r with different asymptotic values φ∞.

3. AdS attractors with higher derivatives

The process of compactification of the string theory from higher to lower dimensions intro-

duces scalar fields (moduli/dilaton) which are coupled to curvature invariants. We prove

the existence of the attractor mechanism even in the presence of higher derivatives terms.

For simplicity, we consider just R2 corrections which appear in bosonic string theory but

we expect to reach similar conclusions for more interesting case of the R4 corrections.

– 11 –
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Figure 1: φ(r) vs. r, where the numerical coefficients are rH = 1, l2 = 6 for the effective potential

Veff = 2e
√

3φ +2e−
√

3φ. Different curves represent different asymptotic values for φ∞. The attractor

point is φ0 = 0 at the horizon, rH = 1.
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Figure 2: φ(r) vs. r, where the numerical coefficients are rH = 1, l2 = 6 for the effective potential

Veff = 2e3φ + 2e−3φ. Different curves represent different asymptotic values for φ∞. The attractor

point is φ0 = 0 at the horizon, rH = 1.

3.1 Equations of motion for Gauss-Bonnet gravity

We add the most general R2 correction with general scalar coupling to our previous action.

The action is given by:

S = S0 + Scorr (3.1)

where

Scorr =
1

κ2

∫

d5x
√−g

[

G1(φi)R
2 +G2(φi)RµνR

µν +G3(φi)RµναβR
µναβ

]

– 12 –
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From now on we focus on R2 corrections which form the Gauss-Bonnet Lagrangian8

LGB = R2 − 4RµνR
µν +RµναβR

µναβ . (3.2)

that correspond to G2 = −4G1, G3 = G1 in the above most general action. The equations

of motion for the gauge fields do not change, while the scalar and three Einstein equations

are modified by the Gauss-Bonnet term. Now we are again interested in static, spherically

symmetric black holes. Thus, we consider the same ansatz as in the previous section for

the gauge fields and the following ansatz for the metric:

ds2 = −a(r)2dt2 + c(r)−2dr2 + b(r)2dΩ2
3 (3.3)

Then all the equations can be obtained from the following one-dimensional action (see the

appendix for details):

S1−dim =
π

4GN

∫

dr

[

3b2b′a′c+
3ab

c
(1 − b′2c2)+6abcb′2− 1

2
ab3cφ′2− a

b3c
Veff(φ)+

6ab3

l2c

+12G(φ)(ab′3c2c′ + a′b′c+ ab′2b′′c3) − 12G′(φ)(a′bb′2c3 − a′bc− ab′c)

]

(3.4)

After a little algebra, choosing the gauge a = c, the Einstein equations can be written as

φ′2 + 3
b′′

b3
(

b2 + 4G(φi)(1 − a2b′2) − 8G′(φi)a
2bb′
)

+
12G′′(φi)

b2
(1 − a2b′2) = 0 (3.5)

4(−1 + a2b′2) + (a′2 + aa′′)b2 + ab(7a′b′ + 2ab′′) − 12b2

l2

+
4G(φi)

b
G1 −

4G′(φi)

b
G2 + 4G′′(φi)(a

2 − a4b′2 − 2a3a′bb′) = 0 (3.6)

− 1 + aa′bb′ + a2b′2 − 1

6
a2b2φ′2 +

Veff

3b4
− 2b2

l2
+

4G(φi)

b
(aa′b′ − a3a′b′3)

−4G′(φi)

b
(3a3a′bb′2 − aa′b− a2b′ + a4b′3) = 0 (3.7)

where

G1 = (1 − a2b′2)(3aa′b′ + aa′′b) + a′2b(1 − 3a2b′2) − 2a3a′bb′b′′ (3.8)

G2 = 6a2a′2b2b′ − 3a2b′(1 − a2b′2) − 5aa′b(1 − 3a2b′2)

+2a3a′′b2b′ + 2a3a′b2b′′ + 2a4bb′b′′ (3.9)

and the equations of motion of scalar fields are given by

∂r(a
2b3∂rφi) =

∂iVeff

b3
− 12∂iG

[

− a′2b+ 3a2a′2bb′2 − a(ab′′ + 2a′b′ + a′′b)

+a3b′
(

(ab′′ + a′′b)b′ + a′(2b′2 + 2bb′′)

)]

(3.10)

8It is known that, in some cases, the statistical entropy matches the thermodynamical entropy due to the

Gauss-Bonnet [9] even if the effective action of string theory contains R2-terms that are susy completions

of Weyl-squared terms rather than GB terms. There is no complete understanding of this match, but it

seems that it is related to an appropriate field redefinition. Therefore, it is instructive to study black hole

solutions in a gravity theory with GB corrections.
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3.2 Zeroth order solution

Consider constant scalar fields φi = φi0. Then, equation ( 3.5 ) can be solved by

b(r) = r (3.11)

Solving equations (3.5) and (3.7) for a double horizon (extremal) solution gives (see the

appendix for details)

a2(r) = 1 +
r2

4g0
− r2

4g0

√

1 − 8g0
l2

+
16g0(g0 + r2H +

3r4
H

2l2
)

r4
− 8g0r4H(1 +

2r2
H

l2
)

r6
(3.12)

where g0 = G(φ0i). Notice that in this case it is easier to solve the Hamiltonian con-

straint (3.7) than the equations of motion (as was done in section 2), since the equations of

motion contain complicated second order derivative terms. Using the solutions for a and

b, the dilaton equation (3.10) becomes ∂iW (φi)|φi0
= 0, where

W (φi) = Veff(φi) + 12r4H

(

1 +
3r2H
l2

)

ln

(

1 +
4G(φi)

r2H

)

(3.13)

is the analogue of the ”effective potential” when we add the Gauss-Bonnet correction.

The conditions for having attractor solutions are

∂iW (φi)|φi0
= 0 (3.14)

where

M̃ij =
1

2
∂i∂jW (φi0) (3.15)

have positive eigenvalues.

To find the entropy, we write equation (3.7) for the solution (3.11) and (3.12) at horizon

r = rH and we get

− 1 +
Veff

3r4H
− 2r2H

l2
= 0 (3.16)

Solving the algebraic equations (3.14) and (3.16) together, gives rH and φi0 in terms

of the charges carried by black hole. The entropy is obtained from the entropy function,

by adding −2π
∫

S3 LGB to it, for the metric in (2.24).

SBH =
1

2GN
π2r3H

(

1 +
12g0
r2H

)

= 8π3r3H

(

1 +
12g0
r2H

)

(3.17)

3.3 First order solution

Starting with first order perturbation theory

δφi = φi − φi0 = ǫφi1 (3.18)
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where ǫ is a small parameter we use to organize the perturbation theory. The first correction

to the scalars φi satisfies the equation

∂r(a
2b3∂rφi1) =

β2
i

b30
φi1 (3.19)

where β2
i is the eigenvalue for the matrix 2M̃ij . We are interested in a solution which does

not blow up at the horizon r = rH . This gives the following solution near the horizon

φi1 ≃ c1i

(

1 − rH
r

)γi

(3.20)

where γi are positive roots of

γi(γi + 1) =
β2
i

4r4H

(

1 +
4g0
r2H

)(

1 +
3r2H
l2

)

−1

(3.21)

Asymptotically (as r → ∞) φi1 takes a constant value, c1i — however φi1 is vanishing at

the horizon and the value of the scalar is fixed at φi0 regardless of its value at infinity.

3.4 Higher order solution

The analysis of the higher order solution is quite similar to the previous section. However it

is rather difficult to solve the resulting differential equations analytically even in the second

order. But as we will see below we can still solve our differential equations approximately

order by order.

Without loss of generality, here we just consider the case with a single scalar field. All

results can be simply generalized to the multi-scalar case. We can expand the solution in

terms of the small parameter x = r − rH as a Frobenius series as follows

a(r) =

(

x+ xγ1
∞
∑

n=2

anx
n

)

, (3.22)

b(r) =
rH

1 − x

(

1 + xγ2
∞
∑

n=1

bnx
n

)

, (3.23)

φ(r) =

(

φ0 + xγ3
∞
∑

n=1

φnx
n

)

, (3.24)

We also take a common γi ≡ γ for all the solutions and write the series as:

φ(r) = φ0 +Kxγ + · · · ,
a(r) = x+ a1x

γ+1 + · · · ,
b(r) = r(1 + b1x

γ + · · · ).

We also consider Taylor series expansions for Veff(φ) and G(φ) as follows,

Veff(φ) = v0 + v1(φ− φ0) +
1

2
v2(φ− φ0)

2 + · · · , (3.25)

G(φ) = g0 + g1(φ− φ0) +
1

2
g2(φ− φ0)

2 + · · · . (3.26)
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Figure 3: φ(r) vs. log(r), where numerical coefficients for the potentials are g2 = 1/9, v2 = 2, v0 =

4 and g0 = 1/4. Different curves represent different asymptotic values for φ∞. The attractor point

is φ0 = 0 at the horizon, rH = 1.

By a careful investigation near the horizon, for the lowest power of x which is xγ , one can

solve the set of equations as we did in the previous subsection and find the non-trivial

solutions (from (3.21), (3.16) and (3.15))

γ =
1

2



−1 +

√

1 +
β2

r4H

(

1 +
4g0
r2H

)(

1 +
3r2H
l2

)

−1


 , (3.27)

v0 = 3r4H +
6r6H
l2

, (3.28)

with v1 = g1 = a1 = b1 = 0 and

β2 = v2 +
48g2r

4
H(1 +

3r2
H

l2
)

r2H + 4g0
(3.29)

However, v2, g2 and K are undetermined to this order. The second equation in (3.28)

is the extremum condition for W which gives the attractor value φ0 at the horizon. Notice

that we are faced with an extra condition g1 = 0, which indicates that G, Veff and W are

at their extremum at the horizon, simultaneously. Such a case is the only situation where

a non-integer γ can be found. Otherwise we have to choose γ = 0 for g1 6= 0.
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The regularity condition for φ indicates that γ should be non-negative and it in turn

gives β2 > 0, or

v2 +
48g2r

4
H(1 +

3r2
H

l2
)

r2H + 4g0
≥ 0 . (3.30)

This again means that WH is minimum at its extremum point φ0.

Higher order terms can be derived in a similar fashion. The important point is that,

due to the non-linear nature of equations, they are a mixture of different powers of γ, like

xnγ as well as xnγ+m. To order these powers, we assume 0 < γ < 1. Then the next leading

term would be x2γ . For higher order terms, since γ is already known from the first order

result (3.27), we can determine whether the next order is x3γ or xγ+1. For small enough

γ, it shows that we are generating a power series, xnγ as argued in [20].

Notice that in contrast to the analysis of the previous section, here we considered all the

equations simultaneously. This first means that, in principle, we are taking the backreaction

into account. Secondly, we are dealing with a higher derivative theory, besides the Klein-

Gordon equation for the φ field. Other equations also involve the second derivative of φ

and are important in the dynamics of φ. So, they should be investigated as well. To avoid

quoting lengthy results, we demonstrate our results for a numerical simulation in figure 3.

4. Embedding in string theory: attractor horizons and moduli ‘flow’

In this section we present some physical interpretations of our results in the context of

the AdS/CFT correspondence. After constructing the embedding in string theory, we

consistently interpret the moduli flow in the bulk as a ‘holographic’ RG flow and construct

the c-function. The attractor horizon has spherical topology and corresponds to an IR

fixed point.

4.1 Holographic RG flow

We start by reviewing some known useful facts about the RG flow — we discuss the RG

flow within the AdS/CFT correspondence and then we will interpret the moduli flow as

a ‘holographic’ RG flow in the bulk of AdS spacetime. Some of the original work on

holographic RG flow appeared in [31]. For a review see [32].

The RG equation of a system (represented by its initial set of coupling constants) de-

scribes a trajectory (‘flow’) in the coupling constants space. The set of all such trajectories

generated by different initial sets of coupling constants define the RG flow in the coupling

constants space. In general it is found that such a trajectory is attracted to a fixed point

that is a functional attractor for the flow. The behavior within the functional attractor is

then determined by the β-function for the relevant couplings. In string theory the couplings

are identified with the moduli space of the theory under consideration.9

The AdS/CFT correspondence is referred to as a duality since the supergravity (closed

string) description of D-branes and the field theory (open string) description are different

9The constants which appear upon compactification are vacuum expectation values of certain massless

fields. Thus, they are determined dynamically by the choice of the vacuum, i.e. the choice of the consistent

string background.

– 17 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
4

formulations of the same physics. This way, the infrared (IR) divergences of quantum

gravity in the bulk are equivalent to ultraviolet (UV) divergences of the dual field theory

living on the boundary. A remarkable property of the AdS/CFT correspondence is that it

works even far from the conformal regime. Conformal field theories in various dimensions

correspond to AdSd+1 ×Xq gravitational theories. But one can also have cases that inter-

polate between asymptotically AdS spaces at the boundary and in the middle of the bulk,

that are naturally interpreted as two conformal points of a dual QFT. Any hypersurface of

constant radius in the bulk of AdS should have a field theory dual and the radial coordinate

is consistently interpreted as the energy scale in the field theory. The RG ‘trajectory’ then

allows us to define the UV and the IR limits of a given QFT and in the dual to interpret

the ‘radial’ flow as a holographic RG flow. At a critical point a system can be regarded

as scale invariant due to the violent critical fluctuations of the order parameter which lack

any characteristic length and time scale. Thus, in the AdS/CFT context, the CFT on

the boundary is the UV fixed point of a QFT in the bulk. Using the gravity side of the

correspondence (deformations of AdS) one can obtain holographic RG flows corresponding

to non-conformal field theories.

In [28], the Hamilton-Jacobi equations of canonical gravity were used to obtain first-

order differential equations10 from the supergravity equations of motion and to derive the

holographic RG flow. Specifically, the authors of [28] studied an action of scalar fields

coupled to gravity with a non-trivial potential for the scalars:

Sloc [φ , g ] =

∫ √
g

(

V (φ) +R +
1

2
∂µφigij(φ) ∂µφ

j

)

(4.1)

The first order equations of motion can be written as

φ̇i = gij∂jU, ġµν = −1

3
U(φ)gµν (4.2)

and the scalar potential V (φ) is related to ‘superpotential’ U(φ) by

V =
1

3
U2 − 1

2
∂iU g

ij∂jU (4.3)

The identification of the holographic RG flow with the field theory local RG flow expressing

how Weyl symmetry is broken allows to construct a holographic c-function and also the β-

function. The solutions of this theory are BPS domain walls (N = 1 supersymmetric kinks

in the radial direction) and the flow is between different AdS spaces, which correspond to

different ground states of the 5 dimensional N = 8 gauged supergravity.

However, the attractor mechanism appears in a slightly different context: the moduli

potential is trivial (a constant) and instead the gauge fields in the bulk are turned on. There

is an induced effective potential for the moduli due to the non-trivial coupling between

moduli and the form fieds. The non-BPS flow is now between the boundary of an AdS5

(UV region) and the horizon of the extremal black hole (IR region). For the extremal black

10In the context of attractor mechanism in flat spacetime, attempts to obtain first-order differential

equations and interpret non-BPS extremal black hole solutions were made in [29, 30].
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hole solution, we have the usual AdS5, but a trivial flow. For a large enough perturbation

δφi, we can reach another AdS5 vacuum, and then we will have a holographic flow between

the new AdS5 and the horizon of the extremal black hole.

There is an enhanced symmetry AdS2 × S3 in the near-horizon limit and so the flow

is still between two AdS vacua, albeit with different dimensionality — however,the super-

symmetry can be broken in the bulk. The breaking of supersymmetry is not problematic,

as one can have a non-supersymmetric RG flow between conformal points in a supersym-

metric theory, but the change from AdS5 to AdS2 × S3 is more puzzling, however we will

analyze it in the next subsection.

At this point it is useful, though, to present some computational details on solutions

which interpolate between two critical points and emphasize similarities between the kink

solutions with and without horizons.

First, let us discuss a simple model with a single bulk scalar field coupled to gravity

(see e.g., [32, 33]). We describe a domain wall solution that interpolates between two AdS

spaces with different radii. The scalar non-linear equation of motion is well approximated

by a linear solution near a critical point — let us consider a quadratic approximation given

by:

V (φ) ≃ V (φ0) +
1

2
β2φ2

1 , φ1 = φ− φ0 (4.4)

thus the corresponding solution is (here r is a coordinate in the AdS space at infinity

defined as in (4.22))

φ1(r) = Ar(∆−4) +Br−∆ , ∆ = 2 +
√

4 + β2l2 (4.5)

The UV point corresponds to the boundary (r → ∞) and the fluctuation should die off

(φ(r) → φUV0 ). The solution is then given by

φ(r) = φUV0 + φUV1 ≈ φUV0 +Ar(∆
UV

−4) +Br−∆UV

(4.6)

with the constraint 2 < ∆UV < 4 that is equivalent with a negative mass2, β2 < 0.11 Thus

the critical point is a local maximum given by V (φUV0 ) and the dual QFT is a relevant

deformation of an UV CFT that is living on the boundary region of the domain wall

solution.

The IR point corresponds to a region deep in the bulk (r → 0) and the corresponding

critical point should be a minimum. The solution is again given by

φ(r) = φIR0 + φIR1 ≈ φIR0 + Cr(∆
IR

−4) +Dr−∆IR

(4.7)

except that ∆IR > 4 that corresponds to a positive mass2, β2 > 0 — that imposes a further

constraint, namely D = 0 (this term would be divergent). Thus, as expected from RG flow

properties, the domain wall approaches the IR region in the bulk with the scaling rate of

an irrelevant operator of dimension ∆IR > 4.

11Due to the negative curvature, fields with negative mass are permitted to exist in AdS. In fact the lower

bound β2 > −4 corresponds to the stability bound for field theory in Lorentzian AdS.

– 19 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
4

We are now ready to understand the case of interest, a black hole in AdS. In this case

the deep IR region corresponds to the black hole horizon. By imposing the attractor con-

ditions, the horizon should be a stable minimum of the effective potential. It is interesting

to observe that there also are two solutions in the near horizon limit, but the existence of

a regular horizon forces us to discard the divergent mode. Therefore, the attractor horizon

describes the IR point of an RG flow and corresponds to a deformation of a CFT by an

irrelevant operator (see, also, [20]). For completeness, we present the behavior of the first

order solution at the AdS boundary. Consider the equations (2.36) and (2.41) at large r

— (2.41) becomes

∂r

(

r5

l2
∂rφi1

)

=
β2
i

r3
φi1 (4.8)

Let us define y ≡ βil
3r3

, then for large r we obtain

φi1(r) = c1y
2

3 I 2

3

(y) + c2y
2

3 I
−

2

3

(y) (4.9)

where c1 and c2 are arbitrary constants and Iν stands for a modified Bessel function.

In conclusion it is very tempting to interpret the moduli flow as the holographic RG

flow in the bulk — we will make these ideas more concrete in the following by constructing

explicitly the string theory embedding of our system and studying its c-function.

4.2 String theory embedding

We have been analyzing asymptotically AdS5 solutions until now. In order to talk about

AdS/CFT however we need to have 10 dimensional IIB supergravity solutions. So we need

to understand whether we can embed the extremal black holes in 10 dimensions via a

consistent truncation. The extremal black holes can be embedded in 5 dimensional N = 8

gauged supergravity, and therefore are in the same class as the solutions of [33]. It is

believed that the full N = 8 5 dimensional gauged supergravity is a consistent truncation

of 10 dimensional IIB supergravity as in the 4 dimensional [34] and 7 dimensional [35] cases,

though until now only subsets of it have been obtained as consistent truncations. For the

case of extremal black holes however, we have not only an embedding in 10 dimensional IIB

supergravity, but we can even obtain it as the near horizon limit of a system of D-branes [6].

The extremal RNAdS solution is a special case of the 3-charge black holes in [6, 36],

with H1 = H2 = H3 ≡ H. The general (non-extremal) solution is

ds25 = −(H1H2H3)
−2/3f dt2 + (H1H2H3)

1/3(f−1dr2 + r2dΩ2
3,k);

Xi = H−1
i (H1H2H3)

1/3,

Ai =
√
k(1 −H−1

i ) coth βidt (4.10)

where

f = k − µ

r2
+ g2r2(H1H2H3), Hi = 1 +

µ sinh2 βi
kr2

(4.11)

and k = 1, 0,−1 corresponds to having S3, T 3 or H3 foliations, so the case studied here

corresponds to k = 1. If H1 = H2 = H3 = H (thus βi = β), then Xi=constant=X. The
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change of coordinates r̃2 = Hr2 = r2 + µ sinh2 β brings us to our metric in r̃ coordinates,

since dr2 = Hdr̃2 and

H−2f = g2r̃2 + 1 − µ(2 sinh2 βi + 1)

r̃2
+
µ2 sinh2 βi cosh

2 βi
r̃4

(4.12)

is identified with a2, if we have

g2 =
1

l2
; sinh2 β = −1

2
+

1

2

√

1 +
1 + 2r2H/l

2

r2H/l
2(1 + 9r2H/4l

2)
; µ =

r2H(2 + 3r2H/l
2)

√

1 +
1+2r2

H
/l2

r2
H
/l2(1+9r2

H
/4l2)

(4.13)

and then we also get Ai = qdt/r̃2.

The 10 dimensional embedding of the extremal RNAdS solution is obtained from the

10 dimensional reduction ansatz used in [6], namely

ds210 =
√

∆̃ds25 +
1

g2
√

∆̃

3
∑

i=1

X−1
i (dµ2

i + µ2
i (dφi + gAi)

2) (4.14)

where ∆̃ =
∑3

i=1Xiµ
2
i and

dΩ2
5 =

3
∑

i=1

dµ2
i + µ2

i dφ
2
i ; µ1 = sin θ; µ2 = cos θ sinψ; µ3 = cos θ cosψ (4.15)

is the 5-sphere metric. It is important to notice that each angular momentum becomes

a charge after KK reduction on S5 — this resembles the KK reduction on a circle when

the momentum on the circle becomes the electric charge (the circle fibration will give the

magnetic charge).

In our case, since Xi = X=1, ∆̃ = X, and 1/g2 = l2 we get

ds210 = ds25 + l2
3
∑

i=1

[dµ2
i + µ2

i (dφi + gAi)
2] (4.16)

so the extremal RNAdS is embedded (up to a constant rescaling) by just adding a sphere

of radius l, squashed by the gauge field, i.e. rotating on this 5-sphere.

Since we have a 10 dimensional IIB supergravity solution, we can safely use AdS/CFT.

But it would be useful to have also a D-brane solution that gives the above solution in the

decoupling limit.

It is known that the general RNAdS black hole embeds to the above 10 dimensional

metric, which corresponds to adding a chemical potential for the R charge in AdS/CFT [37]

. It is also known how to obtain the k = 0 (torus foliation) AdS black holes from the

decoupling limit of rotating D3-branes [6]. But a minimal change is needed to obtain the

k = 1 black holes considered here.

The D3 branes rotating with 3 angular momenta li, i = 1, 2, 3 in 3 different directions

have the metric

ds2 = H−1/2

(

−
(

1 − 2m

r4∆

)

dt2+dx2
1+dx2

2+dx2
3

)

+H1/2

[

∆dr2

H1H2H3 − 2m/r4
(4.17)

+r2
3
∑

i=1

Hi(dµ
2
i + µ2

i dφ
2
i ) −

4m coshα

r4H∆
dt

3
∑

i=1

liµ
2
i dφi +

2m

r4H∆

( 3
∑

i=1

liµ
2
i dφi

)2
]
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where

∆ = H1H2H3

3
∑

i=1

µ2
i

Hi
; H = 1 +

2m sinh2 α

r4∆
; Hi = 1 +

l2i
r2

(4.18)

In our case, l1 = l2 = l3 ≡ l0, so H1 = H2 = H3 ≡ h, and ∆ = h2. Making again the

change of variables r̃2 = r2 + l20 we get r4∆ = r̃4 and

ds2 = H−1/2

[

−
(

1 − 2m

r̃4

)

dt2 + dx2
1 + dx2

2 + dx2
3

]

+H1/2

[

dr̃2

1 − 2m
r̃4

+
2ml2

0

r̃6

+r̃2dΩ2
5 −

4ml0 coshα

r̃4H
dt

3
∑

i=1

µ2
i dφi +

2ml20
r̃4H

( 3
∑

i=1

µ2
i dφi

)2
]

(4.19)

where H = 1 + 2m sinh2 α r̃−4.

The decoupling limit is obtained via the rescalings

m = ǫ4m′; sinhα = ǫ−2 sinhα′; r = ǫ r′; xµ = ǫ−1x′µ; li = ǫl′i (4.20)

followed by ǫ→ 0 and dropping the primes. One then gets (4.14) with

dΩ2
3,k = d~y · d~y; ~y = g~x;

1

g2
=

√
2m sinhα; µ = 2mg2; l2i = µ sinh2 βi (4.21)

But notice that if in the final metric (4.14) we change from k = 0 to k = 1, replacing

d~y ·d~y with dΩ2
3, and correspondingly we add 1 inside f , we can still obtain the metric from

the decoupling limit of the same D3 brane metric (4.17), with an infinitesimal perturbation.

Indeed, the decoupling limit involves xµ = ǫ−1x′µ, which now we can understand as rescal-

ing the radius in R2dΩ2
3 by R = R′/ǫ. Since after the rescaling we want to have R′ = 1, it

means initially R = 1/ǫ→ ∞, thus a sphere of a very large radius, still approximated by a

plane. Moreover, the addition of the +1 in f implies the addition of (g2r2H1H2H3)
−1 to

1 − 2m
r4∆

in the coefficient of dt2 and of 1/(g2r2) (=
√

2m sinhα/r2) to H1H2H3 − 2mr−4

in the coefficient of dr2. However, the same reasoning tells us that in order to get a finite

result after the decoupling limit, these added terms need to be multiplied by ǫ2 → 0. In

conclusion, we can actually also obtain the k = 1 case (sphere foliation) from (4.17), with

an infinitesimal perturbation.

So the extremal RNAdS metric with sphere foliation can be obtained as a consistent

truncation of the near horizon limit of rotating D3 branes. Since the nonrotating case is dual

to N = 4 Super Yang-Mills, the perturbed extremal RNAdS solution should correspond to

adding a perturbation in the UV and obtaining an RG flow to a different (IR) conformal

fixed point.

As we noticed however, there is an apparent discrepancy in dimensionality, namely we

start with AdS5 in the UV and get AdS2 × S3 in the IR, that seems problematic at first

sight (for usual holographic flows we go between two different AdS5’s). However, what is

important for the conformal field theory is the global boundary of AdS5 and AdS2 × S3,

which in both cases is Rt × S3 (conformal to 4 dimensional flat space). Note that we have
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used throughout the sphere foliation of AdS space and the AdS space extremal black hole,

where the metric at infinity is

ds2 ≃ −r
2

l2
dt2 + l2

dr2

r2
+ r2dΩ2

3 (4.22)

for which the Rt × S3 boundary at r → ∞ is actually parametrized by t and Ω3 (and r2 is

taken out when we consider the conformal boundary). For the AdS2×S3 near the horizon,

the S3 metric is (rH + ρ)2dΩ2
3 (here ρ = r − rH), and the interpolation between r2 and

r2H is done by b(r)2, which does look indeed like a holographic flow between two dual RG

fixed points. Notice then that the correct conformal radius of the two (dual) Ω3’s is given

by b′(r), since it gives 1 for the extremal black hole, both at the boundary and at infinity.

This is what we want since in the extremal case the dual CFT does not change, and has

conformal radius 1.

In conclusion, in the case of a nontrivial holographic flow (perturbed extremal black

hole) both the UV and IR correspond to 4 dimensional conformal field theories, which we

expected, since we have a holographic flow of N = 8 5 dimensional gauged supergravity,

dual to an RG flow in 4 dimensions. A nontrivial holographic flow occurs if the perturbation

δφi is large enough to produce a new AdS5 vacuum, thus going away from the extremal

black hole solution.12 This is so, since an RG flow relates two conformal fixed points, and

a small perturbation will get us away from the original AdS5 vacuum.

The holographic RG flow is 10 dimensional, but reduces to the 5 dimensional flow

upon the dimensional reduction on S5 in (4.14). The sphere S5 now plays a role, since

its squashing (rotation) due to the gauge field Ai is partly responsible for the flow (unlike

previous cases, the flow is not solely governed by scalar fields, but is also governed by gauge

fields).

Another important consequence of the embedding of the 5 dimensional extremal

RNAdS solution into a rotating D3 solution is understanding the attractor mechanism from

a different perspective. For the 10 dimensional rotating D3-branes the attractor mechanism

will become a ‘geometrical flow’ between the 10 dimensional flat space at infinity and the

near horizon limit of the rotating D3-branes.13 One could then try to understand the 5

dimensional AdS space attractor mechanism discussed in this paper from the point of view

of the 10 dimensional ‘geometric flow’ via the decoupling limit (4.20). We leave, however,

the exploration of this possibility for further work.

4.3 c-function

We now turn to the calculation of the c-function. A c-function is a monotonic function

that takes the value of the central charge of the UV fixed point in the UV and of the IR

fixed point in the IR.

12It is not clear that such a perturbation will still be in the domain of validity of our analysis, but one

would first need to find an explicit solution and check this. We leave this problem for future work.
13Note that there are no moduli in 10 dimensions for which we can have a usual type of flow to fixed

horizon values.
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The central charge counts the number of massless degrees of freedom in the CFT

(it counts the ways in which the energy can be transmitted). The coarse graining of a

quantum field theory removes the information about the small scales, in other words there

is a gradual loss of non-scale invariant degrees of freedom. Thus, for a QFT RG flow, there

should exist a c-function that is decreasing monotonically from the UV regime (large radii

in the dual AdS space) where it gives cUV to the IR regime (small radii in the gravity dual)

of the QFT where it gives cIR, a statement known as the c-theorem. A c-theorem for gauge

theory that is living on the AdS boundary with topology R×S3 was constructed in [38].14

In order to get the c-function we look for a monotonic function of r, A(r), along the

flow, and then the c-function is C(r) = A(r)n, such that

cUV
cIR

=
C(r = ∞)

C(r = rH)
=

(

A(r = ∞)

A(r = rH)

)n

(4.23)

from which we find the appropriate power of n.

The monotonic function of r along the flow is found from the Einstein equations. The

right hand side of the Einstein equations is the energy momentum tensor, which should obey

the weak (null) energy condition, Tµνξ
µξν ≥ 0, with ξ null. The weak energy condition (the

GR equivalent of the positivity of local energy density) implies a second order inequality

for the metric coefficients, that may sometimes be written as the positivity of the derivative

of a function, thus extracting the monotonic function.

Consider the most general ansatz for the metric with spherical symmetry as follows

ds2 = −a(r)2dt2 +
dr2

c(r)2
+ b(r)dΩ2

3 (4.24)

The combination Rrr − Grr

Gtt
Rtt of the Ricci tensor components gives

3

(

−b
′′

b
− b′c′

bc
+
a′b′

ab

)

= gij∂µφ
i∂µφj = φ′2 (4.25)

using (4.25), it is straightforward to see that

C(r) = C0
a3

b′3c3
(4.26)

is a monotonically increasing function of r for any positive constant C0. Therefore for

the unperturbed extremal solution (a = c, b′ = 1), C(r) = C0 = constant, which is as it

should be, since for the extremal solution there is no RG flow. For the perturbed extremal

black hole, a = c, but b′ 6= 1, thus we get a nontrivial flow. The flow relates two different

conformal fixed points if the perturbation is large enough to reach a new AdS5 vacuum of

N = 8 supergravity. Since b′(r) acts as the conformal radius of S3, cUV /cIR should indeed

scale as b′3, hence the cubic power in C(r).

14A c-function for charged (multi-)black holes in dS space was presented in [39].
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5. Discussion

In this paper, we have investigated the attractor mechanism in spaces with negative cos-

mological constant. A straightforward extension of the effective potential method [20]

confirms that the attractor mechanism still occurs for 5-dimensional extremal black holes

in AdS space. This is expected since the near-horizon geometry of five dimensional extremal

charged black holes in AdS has the SO(2, 1) × SO(4) isometry. The origin of the attractor

mechanism is in the enhanced symmetry of the near-horizon geometry that contains the

infinite long throat of AdS2. The entropy function is constructed (on an SO(2, 1) × SO(4)

symmetric background) by taking the Legendre transform (with respect to electric charges)

of the reduced Lagrangian evaluated at the horizon. By extremising the entropy function

one obtains the equations of motion at the horizon and its extremal value corresponds to

the entropy that is independent of the asymptotic data. However, if the entropy function

has flat directions the extremum remains fixed but the flat directions will not be fixed by

near horizon data and can depend on the asymptotic moduli. In this paper we also have

shown the equivalence of the effective potential method and the entropy function in the

near-horizon limit for extremal black holes in AdS.

In section 3 we have studied the attractor mechanism in AdS space in the presence

of higher derivative terms (we present explicit results for the Gauss-Bonnet term). The

analysis is more involved but we reached similar conclusions. The near-horizon geometry

remains AdS2 × S3 even after adding α′ corrections — the radii of AdS2 and S3 receive

corrections, but the geometry does not change (also see, e.g., [13]). For the Gauss-Bonnet

correction, in a background with asymptotic AdS boundary condition, the regularity of

scalar fields at the horizon15 is a sufficient (and obviously necessary) condition to have the

attractor mechanism — regularity at the horizon restricts the effective potential W to be

at its minimum at the critical point that is equivalent with the fact that the near horizon

geometry is AdS2 × S3.

Sen’s entropy function formalism was applied to extremal black holes in AdS in the

presence of higher derivatives terms in [23]. The advantage of this method is that the

higher derivatives terms can be incorporated easily, but the method can not be used to

determine the properties of the solution away from the horizon. In this paper, we used the

effective potential method (that is based on the equations of motion in the bulk) to prove

the existence of the attractor mechanism in AdS space with higher derivatives.

When the scalar potential is not a constant, a general analysis of the attractor mech-

anism is difficult. The reason is that the right hand side of the equation of motion for the

moduli (2.15) contains two terms: a term that depends of the effective potential and the

other one depends on the scalar potential. Thus, there is a competition between these two

terms in the bulk and this is why the analysis is difficult. In the near horizon limit both

terms are present and if the near horizon geometry is still AdS2 × S3, then the entropy

function formalism can still be applied to compute the entropy. On the other hand the

effective potential dies off at the boundary and the moduli at the bounday are fixed at the

15In fact the metric components should be C∞ in order to obtain a smooth event horizon. We used this

condition in our numerical analysis, see the equations (3.22), (3.24).
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minimum of the scalar potential — the existence of a full solution from the horizon to the

boundary is problematic in this case. However, within the AdS/CFT correspondence, the

critical point of the potential at the boundary should be a a local maximum such that a

relevant deformation in the ultraviolet CFT gives a new long distance realization of the

field theory. Therefore a discussion of the attractor mechanism for a theory with a non-

trivial moduli potential should be made case by case. On the other hand, we were able to

completely study the attractor mechanism in AdS space for which the moduli potential is

constant (related to the cosmological constant).

In section 4 we provided some physical interpretations of our results in the context of

the AdS/CFT correspondence. We interpreted the moduli flow as a holographic RG flow

in the AdS bulk and constructed the corresponding c-function. Let us now discuss in detail

these results.

It is well known that by using different foliations of AdS space one can describe bound-

aries that have different topologies affording the study of CFT on different backgrounds.

We are interested in a foliation of AdS for which the boundary has the topology R×S3 —

the black holes in this space have horizons with spherical topology. The diffeomorphisms

in the bulk are equivalent with the conformal transformations in the boundary and the

spherical boundary is related conformally to the flat boundary if the point at the infinity

is added for the latter. In other words, the boundaries with different topologies are related

by singular conformal transformations. Since the CFT is living on a boundary with the

topology R × S3 there is an additional Casimir-type contribution to the total energy in

accord with the expectations from quantum field theory in curved space [40] — the cen-

tral charge is related to the Casimir energy in the boundary. In [38], a c-function (an

off-shell generalization of the central charge) for an AdS space foliated by spherical slices

was proposed.

For a supersymmetric flow the IR point is a naked singularity (the BPS limit of a RN-

AdS black hole is different than its extremal limit and it has a naked singularity) — the

analysis in [38] was done for only one gauge field. There is a similar situation in flat space:

if we consider a theory with just one gauge field exponentially coupled to the dilaton,

the extremal limit is a naked singularity. The non-trivial form field generates an effective

potential for the dilaton, but this potential does not have a minimum. To obtain a stable

minimum a second gauge field should be turned on and so in theories with more than one

gauge field we expect non-singular BPS limits of extremal black holes in AdS. With just

one gauge field, as in [38], we expect that the α′ corrections will play an important role

and the naked singularity may be dressed by a horizon. Another way to avoid this problem

may be that the flow is ending on the surface of a star16 and so the number of degrees of

freedom is much smaller than in the case of a horizon, but still non-zero.

However, our case is different — we are interested in non-supersymmetric attractors in

AdS for which the supersymmetry can be broken in the bulk. At a first look, the existence

of a c-function seems problematic. This issue was addressed in [42] for attractor horizons

in flat space (though, the physical interpretation of a c-function in flat space is less clear

16This is a stable, zero temperature state without horizon — AdS stars were constructed in [41].
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than in AdS) and is closely related with the existence of first order equations of motion.

In [42] it was argued that the boundary conditions play an important role in the sense

that the attractor boundary conditions restrict the allowed initial conditions to make the

equations first order such that the solution at the horizon is regular. The definition of the

c-function is best understood if we have a concrete string theory embedding.

We have shown that the extremal black hole becomes a 10 dimensional black hole

solution rotating in the extra S5 (we simply add a 5-sphere deformed by the gauge field).

Also, we have seen that we can obtain this 10 dimensional metric as the decoupling limit

of a system of rotating black D3 branes, even in the case we are interested in, of boundary

topology R×S3 (sphere foliation of the AdS black hole). Now, we can safely interpret our

results within AdS/CFT duality as in the following.

To define AdS/CFT, one looks at fluctuations in the gravity dual. A field in Lorentzian

AdS space has two kinds of modes, normalizable and non-normalizabile. While the former

corresponds to a state in the CFT, the non-normalizable mode corresponds to insertion of

an operator in the boundary (a bulk field is the source for an operator in the QFT). So, if

the boundary conditions are kept fixed and the bulk is modified (for example, black holes or

gravitational waves) the objects in the bulk correspond to states in the boundary (certain

operators acquire expectations values). An extremal black hole is a zero temperature state

in the CFT. An operator deformation in the CFT will produce an interpolating flow in

which the scalar moduli approach a maximum critical point at the (UV) boundary and a

minimum at the (IR) black hole horizon.

We have shown that the attractor mechanism works also in AdS space, not only in

flat space. However, the interpretation seems to be somewhat different. In flat space, the

attractor mechanism means that the horizon values for the moduli of the extremal black

hole are fixed and the entropy (the value of the entropy function at the minimum) depends

only on the charges qi. In AdS5, a priori there is one more parameter in the entropy, GN,5/l
3

(l is the AdS radius), which varies continuously. However, the correct interpretation of the

moduli flow is as a 10 dimensional RG flow. Then, in string theory, GN,5 = GN/(RS5)5

and RS5 = l, GN = g2
s(α

′)4, which means that GN,5/l
3 = 1/N2 is independent on any

continuous parameters. Therefore, only after embedding in string theory the attractor

mechanism is on the same footing as in flat space.

Acknowledgments

D.A. would like to thank Nabamita Banerjee, Suvankar Dutta, Rajesh Gopakumar, Eugen

Radu, Ashoke Sen, and Sandip Trivedi for interesting conversations and collaboration on

related projects. H.Y and S.Y. would like to thank Sangmin Lee, Soo-Jong Rey and Ashoke

Sen for discussions. The research of D.A. and H.N. has been done with partial support

from MEXT’s program ”Promotion of Environmental Improvement for Independence of

Young Researchers” under the Special Coordination Funds for Promoting Science and

Technology. D.A. also acknowledges support from NSERC of Canada. The work of H.Y.

and S.Y. is supported by the Korea Research Foundation Leading Scientist Grant (R02-

2004-000-10150-0) and Star Faculty Grant (KRF-2005-084-C00003).

– 27 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
4

A. The equations of motion for the R
2 term

For 5-dimensional, spherically symmetric, extremal Gauss-Bonnet black holes with a cos-

mological constant, we take the following ansatz for the metric:

ds2 = −a(r)2dt2 + c(r)−2dr2 + b(r)2dΩ2
3 (A.1)

Then all the equations of motion including the Hamiltonian constraint are obtained by

taking derivatives with respect to the metric components, gauge and scalar fields and

choosing the gauge a(r) = c(r) from the following one-dimensional action:

I =
π

8GN

∫

dr
ab3

c

[

R− c2gij∂rφ
i∂rφ

j − 2

b6
Veff(φi) +

12

l2
+G(φi)LGB

]

(A.2)

where

R = − 2

ab2

[

b2c(a′c)′ + 3a(−1 + c2b′2) + 3bc(ab′c)′
]

(A.3)

Veff(φi) = fAB(φi)QAQB (A.4)

and

LGB = R2 − 4RµνR
µν +RµναβR

µναβ

=
24c

ab3

[

− (ab)′c′ + (ab′ + 3a′b)b′2c2c′ − (ab′′ + a′b′ + a′′b)c

+

(

(ab′′ + a′′b)b′ + a′(b′2 + 2bb′′)

)

b′c3
]

(A.5)

By varying the above full action with respect to each metric component, a, b and c, and

taking the gauge a = c, we obtain the following equations:

φ′2 + 3
b′′

b3
(

b2 + 4G(φi)(1 − a2b′2) − 8G′(φi)a
2bb′
)

+
12G′′(φi)

b2
(1 − a2b′2) = 0 (A.6)

4(−1 + a2b′2) + (a′2 + aa′′)b2 + ab(7a′b′ + 2ab′′) − 12b2

l2

+
4G(φi)

b
G1 −

4G′(φi)

b
G2 + 4G′′(φi)(a

2 − a4b′2 − 2a3a′bb′) = 0 (A.7)

−1+aa′bb′+a2b′2− 1

6
a2b2φ′2 +

Veff

3b4
− 2b2

l2
+

4G(φi)

b
(aa′b′ − a3a′b′3)

−4G′(φi)

b
(3a3a′bb′2 − aa′b− a2b′ + a4b′3) = 0 (A.8)

where

G1 = (1 − a2b′2)(3aa′b′ + aa′′b) + a′2b(1 − 3a2b′2) − 2a3a′bb′b′′ (A.9)

rG2 = 6a2a′2b2b′ − 3a2b′(1 − a2b′2) − 5aa′b(1 − 3a2b′2) + 2a3b2(a′b′)′ + 2a4bb′b′′ (A.10)

Note that differentiating the action with respect to c(r) gave us the Hamiltonian constraint.

The equation of motion for scalar fields is obtained by varying the action with respect to
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φi and gauging such that a = c as follows:

∂r(a
2b3∂rφi) = −b

3

2
∂iG (R2 − 4RµνR

µν +RµναβR
µναβ) +

1

b3
∂i(Veff)

= −12∂iG

[

− a′2b+ 3a2a′2bb′2 − a(ab′′ + 2a′b′ + a′′b)

+a3b′
(

(ab′′ + a′′b)b′ + a′(2b′2 + 2bb′′)

)]

+
1

b3
∂i(Veff) (A.11)

B. Details for the first order solution

From eq. (2.15), we have

∂r(a
2b3∂rφi) =

1

b3

(

∂iVeff(φi) −
1

2
b6∂iV (φi)

)

(B.1)

where Veff = fABQAQB and fAB is the inverse of fAB. Then, using eq. (2.40), we have

φi = φi0 + δφi (B.2)

We consider the case where V is constant, and at the zeroth order the above equation is

reduced to

∂r(a
2
0b

3
0∂rφi) =

1

b30
∂iVeff(φi) (B.3)

Now let us plug φi = φi0 + δφi into the above equation, then we get

∂r(a
2
0b

3
0∂rδφi) =

1

b30
∂iVeff(φi0 + δφi) =

1

b30
∂2
i Veff(φi0)δφi (B.4)

Above we have used eq. (2.31). Now let us define ∂2
i Veff(φi0) to be β2

i and δφi to be ǫφi1
and consider the first order in ǫ. We then get eq. (2.41)

∂r(a
2
0b

3
0∂rφi1) =

β2
i

b30
φi1 (B.5)

At the zeroth order, we have

a0(r) =

(

1 − r2H
r2

)

√

1 +
r2 + 2r2H

l2
, b0(r) = r (B.6)

Let us plug these into the above eq. (B.5), then we get

∂r

[

(1 +
rH
r

)2
(

1 − rH
r

)2(

1 +
r2 + 2r2H

l2

)

r3∂rφi1

]

=
β2
i

r3
φi1 (B.7)

Now we use eq. (2.42)

φi1 = c1i

(

1 − rH
r

)γi

(B.8)
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and get

∂r

[

(

1 +
rH
r

)2(

1 − rH
r

)2(

1 +
r2 + 2r2H

l2

)

r3c1iγi

(

1 − rH
r

)γi−1 rH
r2

]

=
β2
i

r3
c1i

(

1 − rH
r

)γi

(B.9)

For the term of the order (r − rH)γi , we obtain

γi(γi + 1)(rH + rH)2
(

1 +
r2H + 2r2H

l2

)(

1 − rH
r

)γi r2H
r3H

=
β2
i

r3H

(

1 − rH
r

)γi

(B.10)

Therefore we obtain eq. (2.43)

γi(γi + 1) =
β2
i

4r4H
(1 +

3r2H
l2

)−1 (B.11)

In a similar way, we can derive the equation (3.21) using (3.11) and (3.12).

C. Details for the zeroth order Gauss-Bonnet solution

The Hamiltonian constraint given in (3.7) is

− 1 + aa′bb′ + a2b′2 − 1

6
a2b2φ′2 +

Veff

3b4
− 2b2

l2
+

4G(φi)

b
(aa′b′ − a3a′b′3) (C.1)

−4G′(φi)

b
(3a3a′bb′2 − aa′b− a2b′ + a4b′3) = 0

For the zeroth order solution, we consider b0 = r and constant φi = φi0. Then the above

equation becomes

−1 + ra0a
′

0 + a2
0 +

Veff(φi0)

3r4
− 2r2

l2
+

4G(φi0)

r
(a0a

′

0 − a3
0a

′

0) = 0 (C.2)

We want the solution for a2
0 to have a double horizon. The double horizon condition

determines Veff(φi0) as follows:

Veff(φi0) = 3r4H

(

1 +
2r2H
l2

)

(C.3)

Multiplying (C.2) by g0r and plugging Veff(φi0) into it, we can write (C.2) as follows:

r3

4
+
g0r

4
H(1 +

2r2
H

l2 )

r3
− 2

(

g0a
2
0 − g0 −

r2

4

)(

g0(a
2
0)

′ − r

2

)

− 2g0r
3

l2
= 0 (C.4)

which can be easily integrated into the form:

r4

16
− g0r

4
H(1 +

2r2
H

l2
)

2r2
−
(

g0a
2
0 − g0 −

r2

4

)2

− g0r
4

2l2
+ C = 0 (C.5)

with integration constant C. Then again requiring the degenerate horizon condition, we

set the integration constant C:

C = g0

(

g0 + r2H +
3r4H
2l2

)

(C.6)
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and rearranging (C.5) we get

(

g0a
2
0 − g0 −

r2

4

)2

=
r4

16

(

1 − 8g0r
4
H(1 +

2r2
H

l2
)

r6
− 8g0

l2
+

16g0(g0 + r2H +
3r4

H

2l2
)

r4

)

(C.7)

In obtaining a2
0, we can see that there are two branches ±. But we want to obtain the

AdS-Reissner-Nordstrom solution in the limit g0 → 0, which makes us choose the − branch.

Thus we get (3.12):

a2
0 = 1 +

r2

4g0
− r2

4g0

√

1 − 8g0
l2

+
16g0(g0 + r2H +

3r4
H

2l2
)

r4
− 8g0r4H(1 +

2r2
H

l2
)

r6
(C.8)
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